Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904062

RESUMO

Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using Agrobacterium tumefaciens is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two Agrobacterium strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for ß-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for gus insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches.

2.
Plants (Basel) ; 12(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36616319

RESUMO

Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.

3.
Front Plant Sci ; 10: 438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024602

RESUMO

Somatic embryogenesis (SE) is an important biotechnological tool for large-scale clonal propagation and for embryogenesis research. Moreover, genetic transformation and cryopreservation procedures in many species rely on efficient SE protocols. We have been studying different aspects related to SE induction and somatic embryo development in tamarillo (Solanum betaceum Cav.), a small tree from the Solanaceae family. Previous proteomic analyses identified a protein (NEP-TC, 26.5 kDa) consistently present in non-embryogenic calluses of tamarillo, but absent in the embryogenic ones. In this work, the role of NEP-TC during SE was assessed by gene expression analysis and immunolocalization. The results obtained demonstrated that NEP-TC is a putative member of the SpoU rRNA methylase family. This protein, present in the cytoplasm and nucleus, is expressed in non-embryogenic cells and not expressed in embryogenic cells. Slightly enhanced SE induction levels in tamarillo plants with NEP-TC down-regulated levels also supports the role of this protein on SE induction. Heterologous expression was used to confirm NEP-TC rRNA methyltransferase activity, with enhanced activity levels when rRNA was used as a substrate. These data relate a putative member of the SpoU methylase family with plant morphogenesis, in particular with SE induction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...